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1. INTRODUCTION 

During the past several decades, a considerable amount of  
theoretical studies have been made on combined forced- 
convection and radiation heat transfer in radiating gas tube 
flow with relation to thermal designs of  rocket nozzles, high- 
temperature gas-cooled reactors and so forth[I-3]. It is, how- 
ever, well recognized that theoretical results obtained for the 
heat transfer characteristics of  such a physical system cannot 
be represented by simple analytical correlations involving 
relevant system parameters, because of  nonlinearity of radi- 
ative heat transfer with respect to temperature and, thus, 
whenever a piece of information about the heat transfer 
characteristics is needed for system parameters which have 
not been examined in the literature, new analyses are always 
required. 

For this reason, development of  approximate methods for 
estimating the composite heat transfer characteristics are of 
great practical importance. The purpose of the present note 
is to fill this need. 

To this end, first we describe an exact formulation, on the 
basis of the boundary layer theory, for analyzing combined 
forced-convection and radiation heat transfer in radiating 
gases flowing in a black, plane-parallel duct, and then pro- 
pose an approximate one-dimensional method for predicting 
the heat transfer characteristics of  this system. Moreover, 
with the proposed approximate method, the mixing cup tem- 
peratures and total Nusselt numbers are calculated for sev- 
eral typical system parameters and the obtained results are 
compared with the exact ones. 

2. TWO-DIMENSIONAL FORMULATION BASED 
ON THE BOUNDARY LAYER THEORY 

The physical system considered in the present study is 
based on the following assumptions: 

(1) The system is bounded by black, plane-parallel plates 
of infinite length and infinite width. Both plates are main- 
tained at the same constant temperature Tw. 

(2) The flowing medium is a gray radiating gas. 
(3) The fluid is incompressible and the physical properties 

of the medium are constant. 
(4) The flow field is fully-developed laminar from the inlet 

of the duct. 

(5) The temperature of the medium at the inlet of the duct 
is uniform and equal to To. 

(6) The boundary layer approximation holds to be true: 
the Peclet number defined by 2pepumYo/k is much greater than 
unity. 

(7) The radiative heat transfer can be treated as if it were 
one-dimensional, i.e. ~q,~./O~. >> Oqr.,/~x. This assumption is 
justified, provided that the radiation Peclet number defined 
by 2UmYo/(16aT3./3Kp%) is appreciably greater than unity [4]. 

Under these assumptions, the two-dimensional energy 
equation is described as 

OT k? f lT  d i v q .  (1) pCpU ~ = ~y2 

where u represents the velocity profile given by 

u = 6 U m { ( y / y o ) - - O ' / Y o ) 2 } .  ( 2 )  

The divergence of the radiative heat flux vector is written 
in the form 

div q r  - -  c~qo/~Y 

: t c { 4 a T  4 - -  2[aT4(E2 (z) + E2 ('Co - -  z ) )  

+ ~  ~ T 4 0 / ) E ~ ( I r - - r ' l ) d y ' l } .  (3) 
I 

The boundary conditions for equation (1) are 

x = O: T = To y = yo : T = T~. (4) 

To obtain the dimensionless energy equation, we introduce 
the following dimensionless quantities: 

NR = k /4~T~ yo Pr = #cp/k Re = 2yoUm/V 

U = u / u m  q=Y/'Y0 0 =  T/Tw Oo = T o / T w l  (5) 

= (x /2yo) /RePr  z = ~0' % = ~0'o. 

With these quantities, equation (1) is rewritten as 

L O0 020 zo { ( 0 4 ( q ) _ l ) [ E z ( r ) + E 2 ( z o _ r ) ]  
~Ut?~ - ~q-~ 2NR 

;o +zo [04 (~ ) -O4(~ ' ) ]EL( I r - r ' l )d~ ' } .  (6) 
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NOMENCLATURE 

a. expansion coefficient 
cp specific heat of fluid 
E,,(x) exponential integral function ofnth order 
h, local total heat transfer coefficient 
k thermal conductivity of fluid 
n exponent 
Nk conduction radiation parameter 
Nuc convective Nusselt number 
Nur radiative Nusselt number 
Nut total Nusselt number 
Pr Prandtl number 
q~,, convective heat flux at the wall 
q, radiative heat flux vector 
q.~ radiative heat flux at the wall U' - 0) 
q~, x-component of the radiative heat flux 

vector 
q~> y-component of the radiative heat flux 

vector 
Re Reynolds number 
T temperature 
u velocity 

dimensionless velocity 
x v-coordinate 

.I y-coordinate 
ro duct spacing. 

Greek symbols 
q dimensionless v-coordinate 
0 dimensionless temperature 
~, absorption coefficient 
It viscosity 

kinematic viscosity 
c dimensionless x-coordinate 
/, density of fluid 
(r Stefan Boltzmann constant 
r optical distance 
r,, optical thickness 
• ~,, dimensionless radiative heat flux at the wall 

( J / -  0). 

Subscripts 
m mean value 
a wall value 
0 inlet value 
: local quantity. 

Similarly. the boundary conditions is rewritten in the l\mn 

~ - - 0 : 0 - 0 ,  q = ( ) , l : 0 -  I. (7) 

Once the temperature fields in each ~-location are obtained 
by an appropriate method, the mixing cup temperatures and 
heat transfer characteristics can be readily estimated from 
the temperature profiles. The mixing cup temperature T., is 
evaluated from 

I~,, = .t,~" uTd'v"Y°U'~' (81 

and is rewritten as 

0,, = 7;, T,, = UOd*l. (9) 

The convective and radiative heat fluxes at the wall (.1 = 0) 
are, respectively, written as 

¢'T 

q, , ,= k ? i . ,  , (m) 

q~,, = a7"4,, [I - 2E~(r0)] 2r(i aTa(q'JEe(r, ,q ') dq'. 

(11) 

The local total heat transfer coefficient is defined as 

h, - ( q ~  + q , , , ) / ( T , ,  - 7~.). ( 1 2 )  

With this quantity, the local total Nusselt number can be 
defined as 

Nut< = h, 2y.,,k k( T~ - 7.,, ) 2y~ = Nuc + Nur 

(13) 

/Vuc = ~ ~]0 ( 1 ,')m ) (14) 

N u r  - ~, ,  '2NR/( I -- 0,,). / I 51 

Here, ~,.~, denotes the dimensionless radiation heat flux at 
the wall (q = 0) and is expressed as 

~,~ = q,.,,/aT~ 

f, = I - 2 E ~ ( r , )  2% 04(q')E2(r ,q ' )drl  '. (16) 
do  

111 the present study, we solve equation (6) together with 
equation (7), utilizing a finite difference scheme [5]. 

3. APPROXIMATE ONE-DIMENSIONAL METHOD 

As seen from equations (13). (14) and (15), the total Nus- 
selt numbers may be readily calculated without solving the 
two-dimensional energy equation exactly, provided that 
N u c ,  'P,,, and 0m are estimated at each ~-location by any 
m e a n s .  

In the following, we propose an approximate method for 
evaluating 0m and Nut~ and address its adequacy. First, the 
governing equation for 0m can be derived by integrating both 
sides of equation (6) once with respect to ~/from 0 to 1 

I d0o,  
- - =  Nuc (I 0ml+~r~/2N R. (171 

4 d~ 

The boundary condition for equation (17) is given by 

5 - -  0 : 0  m - -  ( ) o '  (18) 

Equation (17) constitutes a nonl inear ord inary differential 
equation o f  the first order with respect to 0m and can be 
solved along the f low direction by uti l izing a trapezoidal rule, 
by treating the radiat ion term as an iterative one at each ~- 
location. 

It is, however, necessary for the evaluation of ~P,w to 
express 0(~/) in terms of r/and, for this purpose, we assume 
that 0(;7) may be expanded in the form 

0(tl) - 1 + a . ( l - -  12tl- 11-'"), (19) 

where q. and n are unknowns and are determined by the 
following conditions: 
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Fig. 1. Variations in the local convective Nusselt number  
along the flow direction. 
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Fig. 2. Variations in the total Nusselt  number  along the flow 
direction. 

~ 2 ~ N R C  = / / / ( l - - 0 m )  = --8aon/1 --Om, ( 2 0 )  

0q ,=0,  

fo I 4aon(n + 2) (21) 
Om = UOd~l = 1+  (2n+ 1) (2n+3) '  

From these expressions, we obtain 

ao = - Nuc~(l --Om)/Sn, ]. 

n = [(Nuc~ - 16) + x / ( 1 6 - N u Q )  2 + 64Nuc~ - 192]/16 

(22) 

Here, we further assume that Nuc~ in equations (17) and 
(22) can be replaced with a correlation for Nusselt  numbers  
of  pure convection [6]: 

Nuc~ = 7.54111 +(0.1635~ -~'3 +0.053)65] 1/65. (23) 

Thus,  if a value of  0m is tentatively given, the temperature 
profile for W~w is determined from equations (19), (22) and 
(23) and then the integral appearing in ~P~w may be estimated 
by an appropriate means: we utilize a 20th Gaussian quad- 
rature formula. Once 0m and W~ are determined, Nut~ is 
readily evaluated from its definition, equation (13). 

4. RESULTS A N D  DISCUSSION 

For several typical cases, the mixing cup temperatures and 
total Nusselt  numbers  are obtained both by the exact two- 
dimensional and the approximate one-dimensional method. 
Although variations in the mixing cup temperature along the 
flow direction are not shown graphically, it was found that 
the agreement between the exact results and the approximate 
ones is quite excellent even for the radiation dominant  cases 
corresponding to nos 3 and 4. Figure 1 shows variations in 
the convective Nusselt  number  defined by equation (14) 
along the flow direction. The local convective Nusselt  num- 

ber is well represented by that for pure convection, par- 
ticularly in the inlet region of  a duct, but, for the radiation 
dominant  cases, there occur few derivations from pure con- 
vective Nusselt  number  in the region far from the inlet of  a 
duct. This result suggests that our assumption,  as for Nuc~, 
i.e. equation (23), is fairly reasonable. Figure 2 illustrates the 
results for the local total Nusselt number.  The proposed 
approximate method predicts well variations in the total 
Nusselt  number  along the flow direction: a max imum relative 
error between the exact and approximate results occurs on 
no. 4 (% = 5 and N R = 0.01) and is about  24% at ~ = 0.01. 
Thus,  it may be concluded that the proposed approximate 
method can be utilized for predicting the composite heat 
transfer characteristics of  radiating-gas flow in a black, 
plane-parallel duct, with an acceptable accuracy. 

REFERENCES 

I. R. Viskanta, Radiation transfer and interaction of  con- 
vection with radiation heat transfer. In Advances in Heat 
Transfer (edited by T. F. Irvine and J. P. Hartnett),  Vol. 
3, pp. 176-252. Academic Press, New York (1966). 

2. M. N. Ozisik, Radiative Transfer and Interactions with 
Conduction and Convection. Wiley, New York (1973). 

3. F. M. Modest,  Radiative Heat Transfer. McGraw-Hill,  
New York. (1993). 

4. E. M. Sparrow and R. D. Cess, Radiation Heat TransJer 
(Augmented Edn), pp. 274. Hemisphere, Washington 
(1978). 

5. Y. Kurosaki,  Heat transfer by simultaneous radiation and 
convection in an absorbing and emitting medium in a flow 
between parallel plates, Proceedings of  the 4th Inter- 
national Heat Transfer Conference, Vol. 3, no. R2.5. Else- 
vier, New York (1970). 

6. R. K. Shah and A. K. London,  Laminar  flow forced 
convection in ducts. In Advances in Heat Transfer (Edited 
by T. F. Irvine and J. P. Hartnett),  Supplement 1, pp. 
172. Academic Press, New York (1978). 


